Что такое гиалуроновая кислота?
Гиалуроноваякислота (HA) is a high-molecular-Вес (кг)linear macromolecular acidic mucopolysaccharide composed Соединенные Штаты америкиrepeating disaccharide units Соединенные Штаты америкиD-glucuronic - кислота;иN-acetyl-D-glucosamine [1]. Hyaluronic - кислота;was first isolated От организации объединенных нацийvitreous humour Соединенные Штаты америкиcattle В случае необходимости1934, иit was discovered that - гиалуроническая болезнь- кислота;is also widely found В случае необходимостиВ настоящее времяinterstitial matrix Соединенные Штаты америкиconnective tissue В случае необходимостиanimals иhumans. Among these, the vitreous humour Соединенные Штаты америкиthe eye, skin, umbilical cord, cartilage иsynovial fluid Соединенные Штаты америкиjoints have high levels - гиалуроническийacid. Hyaluronic - кислота;from different sources has basically the same structure, but - гиалуроническая болезнь- кислота;from different sources has different molecular weights[2]. As a multifunctional matrix in the body, - гиалуроническая болезнь- кислота;has important physiological functions such as regulating cell proliferation, differentiation, migration, lubricating joints, protecting cartilage, promoting wound healing, resisting oxidation, иanti-aging.
Hyaluronic - кислота;has a strong water-retaining effect, иits moisturising Воздействие на окружающую средуis higher than that Соединенные Штаты америкиother moisturising substances found in nature. It is known as an ideal natural moisturising factor иhas been widely used in clinical medicine and cosmetics production. With the approval - гиалуроническийacid as a new raw material for food this year, the 3. Применениеfields Соединенные Штаты америки- гиалуроническая болезньacid are constantly expanding. At the same time, consumers- 39; Постоянно улучшается санитарное самочувствие населения, постоянно растет спрос на гиалуроновое кислотное сырье. Важное значение имеет промышленная подготовка высококачественной гиалуроновой кислоты. В данной статье представлен обзор физиологических функций, подготовки, разделения и очистки, а также областей применения природной гиалуроновой кислоты, с целью предоставления справочной информации для разработки и использования гиалуроновой кислоты.
1 распределение и физиологические функции гиалуроновой кислоты в организме
1.1 распределение гиалуроновой кислоты в организме
Natural hyaluronic acid is widely distributed in В различных областяхtissues of higher animals, although the amount varies. It is mainly distributed in the cell matrix and lubricating fluid, including По правам человекаumbilical cord, synovial fluid, skin, thoracic lymphatic fluid, vitreous humour, and rooster comb. The rooster comb is currently the animal tissue with the highest hyaluronic acid content. The hyaluronic acid content of various organisms is shown in Table 1 [3]. Hyaluronic acid is widely distributed in various tissues of the human body. The distributiПо состоянию наof hyaluronic acid in the tissues of different organisms is basically the same, with the main difference being in molecular weight. The molecular weight of hyaluronic acid in normal biological tissues is approximately 1000–8000 kDa. Different molecular weights stimulate different receptors or pathways in three-dimensional structures, exerting different effects [4].
1.2 физиологические функции гиалуроновой кислоты
1.2.1 смазывает соединения и защищает хрящи
Hyaluronic acid is widely distributed in the intercellular matrix and cell matrix. It is the main component of synovial fluid in the joints and is distributed По состоянию наthe surfaces of cartilage and ligaments. Hyaluronic acid has good viscoelasticity. When walking, the synovial fluid is viscous to reduce joint friction. When performing high-impact actions such as running, the synovial fluid is elastic to buffer the stress on the joints. When the joint is under load, the synovial fluid changes from a fluid to an elastic body to protect the articular cartilage [5]. There is a lot of evidence to suggest that osteoarthritis in elderly patients is caused По запросу:oxidative stress. Osteoarthritis is the wear and tear of articular cartilage. When attacked По запросу:reactive oxygen species, the long-chain hyaluronic acid is broken down into hyaluronic acid fragments, weakening the overall structure of the cartilage [6].
1.2.2 способствует заживлению ран
The wound healing process can be divided into four stages: hemostasis, inflammation, proliferat13. Ионand maturation. When an injury occurs, the amount of hyaluronic acid in the wound increases. Due to its large molecular weight, hyaluronic acid is used as an early temporary structure [7]. During the inflammation stage, damaged cells begin to secrete exudates containing salts, water and proteins [8]. This stage is characterised По запросу:redness and heat at the injury site, pain and dysfunction [9]. Hyaluronic acid binds to the CD44 receptor on the surface of leukocytes and endothelial cells, causing fewer leukocytes to migrate to the inflammation site and reducing the degree of wound swelling [10]. The CD44 receptor plays an important role in the inflammatory response, in which high molecular weight hyaluronic acid stimulates the anti-inflammatory response and Гиалуроновая кислота с низким молекулярным весомinduces the inflammatory response. In the proliferation phase, the wound is rebuilt with new collagen tissue, the extracellular matrix is secreted, and the wound begins to shrink under the action of myofibroblasts [11]. In the maturation phase, the unorganized collagen forms cross-links, reducing scarring and enhancing the elasticity of the Кожа, цвет кожиin the wound area.
1.2.3 регулирование распространения клеток, миграции и дифференциации
Hyaluronic acid is an important regulatory factor affecting the processes of cell proliferation, migration and differentiation. The presence of hyaluronic acid helps to hydrate local tissues, weaken the fixation of cells to the extracellular matrix, and promote cell separation, migration and even division. The hyaluronic acid receptors on the cell surface can also be linked to some kinases related to cell moveСоединенные Штаты америки[12].
During the early stages of mitosis, hyaluronic acid levels increase, and levels drop sharply after mitosis enters the G1 phase (the period between the completion of the previous mitosis and the beginning of the synthesis phase). High levels of hyaluronic acid cause the release of growth factors, and by forming an extra-cellular membrane, it affects cell-cell interactions and accelerates cell proliferation [13]. However, it has not yВ то же времяbeen observed that hyaluronic acid directly promotes mitotic activity. This signalling and regulatory effect of hyaluronic acid is related to its molecular weight. Different molecular weights trigger different signalling pathways. Low molecular weight hyaluronic acid induces cell proliferation. In addition, low molecular weight hyaluronic acid can enhance the expression of pro-inflammatory factors, while high molecular weight hyaluronic acid has the opposite effect [14].
1.2.4 ангиогенный эффект
Об этом сообщалосьlow molecular weight hyaluronic acid can stimulate the expression of signal molecules, stimulate the proliferation and migration of - сосудистые сосудыendothelial cells, and high molecular weight hyaluronic acid can inhibit endothelial cell proliferation and migration, thus having an anti-angiogenic effect [15]. However, most of the evidence supporting the effect of hyaluronic acid on cell growth has been produced using tumour xenografts. Some data show that injecting low molecular weight hyaluronic acid can inhibit tumour growth [16], which conflicts with the above concept and indicates that there may be more complex pathways and interactions that require further research.
1.2.5 антиоксидантная активность
Studies have found that hyaluronic acid can eliminate free radicals and has a certain degree of antioxidant activity. High molecular weight hyaluronic acid can protect cells from the effects of reactive oxygen species, which, in excess, can damage proteins, lipids and DNA. Some of the antioxidant properties of hyaluronic acid include its ability to reduce ultraviolet-induced apoptosis and acid-induced DNA/данные отсутствуют.damage [17]. Feng Ning et - эл. - привет.[18] studied the serum superoxide dismutase activity after oral administration of hyaluronic acid and found that hyaluronic acid has an in vivo antioxidant effect. Yu Haihui et al. [19] found that the mucus hyaluronic acid of Andrias davidianus has a certain in vitro antioxidant activity and can scavenge DPPH.,.OH, ABTS+.and reduce Fe3+. Some scholars speculate that the antioxidant properties of hyaluronic acid are due to the hydroxyl functional groups in the structure of hyaluronic acid, which can absorb reactive oxygen species [14].
1.2.6 противостареющий эффект
Studies have found that the amount of hyaluronic acid in the human body decreases with age. Compared to the age of 20, the amount of hyaluronic acid decreases by 75% at the age of 60. The older the person, the lower the amount of hyaluronic acid in the body. The amount of hyaluronic acid in the body also varies among people of the same age. People with a high amount of hyaluronic acid in the body look younger, while people with symptoms of aging have significantly lower amounts of hyaluronic acid in the body [20]. A decrease in the amount of hyaluronic acid in the skin reduces the space filled by the intercellular gel-like matrix, causing the cells to be arranged closely together. Collagen loses water and hardens, making the skin rough and losing its elasticity. Studies have found that hyaluronic acid can heal skin damage caused by ultraviolet radiation, and high concentrations of hyaluronic acid can affect collagen expression [21].
In summary, the physiological functions of hyaluronic acid are closely related to its molecular weight. Hyaluronic acids with different molecular weights play different roles in physiological functions such as wound healing, regulation of cell proliferation, migration, differentiation, Ангиогенез (англо-ангиогенез)and antioxidant activity. Low molecular weight hyaluronic acid induces inflammatory responses, induces cell proliferation, stimulates the proliferation and migration of vascular endothelial cells, and high molecular weight hyaluronic acid has better antioxidant activity than low molecular weight hyaluronic acid. This difference in physiological function leads to differences in its ultimate application in products.
2 структура и свойства гиалуроновой кислоты
2.1 структура гиалуроновой кислоты
Hyaluronic acid is a high molecular weight acidic mucopolysaccharide composed of alternating glucose units linked by β-1,3-glycosidic bonds and N-acetylglucosamine units linked by β-1,4-glycosidic bonds. The primary structure of hyaluronic acid is shown in Figure 1 [22]. Hyaluronic acid, as the only currently discovered non-sulfur-containing glycosaminoglycan, differs from common glycosaminoglycans in that it is synthesized via cell membrane surface membrane proteins rather than by the cell' с аппарат голги [23].
2.2 физические и химические свойства гиалуроновой кислоты
Hyaluronic acid is a white amorphous solid with the common properties of acidic mucopolysaccharides. It is soluble in water but insoluble in organic solvents such as ethanol [24]. Hyaluronic acid aqueous solutions have specific rheological properties, with good viscoelasticity. Low concentrations or small molecular weight hyaluronic acid exist as monomers, with little change in viscosity. High molecular weight and high concentration hyaluronic acid has good viscoelasticity[25], and exhibits non-Newtonian fluid characteristics, making it very suitable for simulating synovial fluid. The viscoelasticity of synovial fluid is related to the concentration of hyaluronic acid[13].
A reasonable change in the molecular weight and solution concentration of hyaluronic acid can obtain better viscoelasticity. Due to the presence of hydrogen bonds between the monosaccharides in the hyaluronic acid molecule chain, hyaluronic acid at low concentrations can also form a unique honeycomb network structure, allowing hyaluronic acid to adsorb about 1000 times its own moisture, which has strong moisturising properties[26]. Hyaluronic acid with different molecular weights has different physical and chemical properties. High molecular weight hyaluronic acid has higher viscosity, while the random curled structure of long-chain hyaluronic acid is more stable, and short chains are more likely to expand [27]. The method and biological pathway by which cells differentiate between high molecular weight and low molecular weight hyaluronic acid are still unknown.
3 подготовка и очистка гиалуроновой кислоты
3.1 источники гиалуроновой кислоты
3.1.1 источники тканей животных
Animal tissue sources can be divided into terrestrial sources and marine sources. Currently, hyaluronic acid is mainly extracted from terrestrial animal tissues such as the rooster comb, human umbilical cord, egg shell membrane, and pig skin. The rooster comb is widely used for hyaluronic acid extraction because it is an animal tissue with a high hyaluronic acid content. Due to the limited supply of terrestrial animal tissue, large-scale production is not possible. Researchers are constantly trying to extract hyaluronic acid from other animal tissues or other sources of raw materials. Marine biological resources such as animal residues, waste, and by-products have always received widespread attention due to their long-term economic and environmental benefits.
They have significant potential as a source of substances such as hyaluronic acid [28]. Researchers have extracted hyaluronic acid from biological tissues such as the ocular vitreous of marine organisms such as the eyes of cuttlefish, squid, tuna, frog skin, fish mucus, and the aqueous humour of freshwater mussels [19, 25, 29]. Yi et al. [29] first extracted hyaluronic acid from the ocular vitreous of tuna, with a final extraction rate of 0.013%. and Haihui Yu et al. [19] extracted it from the surface mucus of the Китайский язык (english)giant salamander. When the amount of added trypsin was 1.5%, the yield of hyaluronic acid was 1.7041 mg/g. The structure of the extracted hyaluronic acid was the same as the standard product. Compared with the tissues of land animals such as the rooster comb and umbilical cord, the extraction rate was low, but it can be used as a stable source of hyaluronic acid extraction.
3.1.2 путь микробного ферментации
Hyaluronic acid is widely distributed in the cell envelope of some bacteria, protecting the cells from oxygen damage. Previous research on hyaluronic acid in bacteria was mainly aimed at exploring the composition and function of the envelope. Shiseido in Japan was the first to apply the fermentation method to the industrial production of hyaluronic acid. The synthesis of hyaluronic acid in the cell is complex and continuous. Glucose is converted to gluco-6-phosphate by glucokinase, and then to the precursors uridine diphosphate N-acetylglucosamine and uridine diphosphate glucuronic acid by various enzymes such as isomerase and glucuronic acid phosphatase and other enzymes to produce the precursor substances uridine diphosphate-N-acetyl-glucosamine and uridine diphosphate-glucuronic acid, which are alternately added to the hyaluronic acid molecule chain under the action of hyaluronic acid synthase [30].
Streptococcus zooepidemicus from group C is the main source of hyaluronic acid [31]. Due to its pathogenicity and endotoxins in wild-type strains, it has become common practice in actual production to modify wild-type strains and produce hyaluronic acid through non-pathogenic strains [32]. The main means of strain treatment are genetic engineering, mutagenesis breeding and protoplast breeding. JIN et al. [33] improved the hyaluronic acid synthesis pathway of Bacillus subtilis by integrating the leech-derived hyaluronidase LHyal gene, regulating the expression of LHyal by sequence optimization and N-terminal fusion His tag strategy, and obtaining a high-yield strain that accumulates hyaluronic acid to 19.38 g/L after 100 h of fermentation in a 3 L fermenter. Wei Chaobao et al. [34] selected Streptococcus zooepidemicus, which has a short production cycle and high strength, for construction on this basis, and obtained a high-yield strain that can alleviate the problem of dissolved oxygen during fermentation. At present, the synthesis of hyaluronic acid has been achieved through the heterologous expression of hyaluronic acid synthase in different hosts such as Bacillus subtilis [35], Lactobacillus [36] and Bacillus glutamicum [37].
3.2 подготовка гиалуроновой кислоты
3.2.1 подготовка гиалуроновой кислоты из животных тканевых источников
The production of hyaluronic acid from animal tissue sources often involves tissue extraction. The complete process includes pretreatment, extraction, separation and purification, drying, etc. The processing technology is relatively mature, the extraction method is simple, and most of the extracted hyaluronic acid is of high molecular weight [38], with high viscosity and good moisturising properties. It is mainly used in the pharmaceutical and cosmetics industries. The main extraction methods are salt extraction and enzyme extraction. The addition of inorganic salts and enzymes can break the complexation of hyaluronic acid and proteins in animal tissue. In addition, enzymes can hydrolyse impurities such as proteins and nucleic acids, which is beneficial for the extraction of hyaluronic acid [39].
KALKANDELEN et al. [40] successfully extracted hyaluronic acid from the comb of a chicken by defatting the tissue homogenate with acetone and extracting it multiple times with a 3. Натрийacetate solution. However, the tissue extraction method is complicated and the extraction rate is low. Enzyme extraction has become a research hotspot due to its high efficiency. Currently, the commonly used enzymes for extraction include neutral proteases, pepsin, trypsin, papain, etc. Ürgeová et al. [41] compared the results of extracting hyaluronic acid from eggshell membranes using pepsin, trypsin and papain. The results showed that trypsin was more effective than the other two enzymes. At a PH-температура воздухаof 8, 37 °C and a trypsin dosage of 50 U/g for enzymolysis of eggshell membranes, the hyaluronic acid extraction rate was 44.82 mg/g eggshell membrane. In order to obtain a better extraction effect, enzyme mixtures or ultrasound are often used in experiments to assist extraction. Chen Shengjun et al. [42] used ultrasound (200 W, 30 kHz) to assist trypsin and complex protease to extract from tilapia eyes. After optimisation, the hyaluronic acid yield was 11.44%, which is about 5% higher than that obtained by simple 1. Ферментативная фермаhydrolysis.
3.2.2 подготовка микробной гиалуроновой кислоты
The На микробной основеfermentation process mainly includes the following steps: seed culture, fermentation, separation and purification, and drying. At present, research on improving the extraction efficiency of microbial fermentation mainly focuses on cultivating excellent strains, selecting suitable culture media, and optimizing fermentation conditions. There have been many studies on obtaining high yields of hyaluronic acid by controlling the conditions of the culture medium and fermentation process. Compared to the preparation of hyaluronic acid by tissue extraction, one advantage of the microbial fermentation method is that the molecular weight of hyaluronic acid can be controlled during the fermentation process. This is also the main content of current research on the fermentation process of hyaluronic acid. The regulation of hyaluronic acid molecular weight is affected by hyaluronic acid synthase and the relative strength of its binding to the substrate, the concentration ratio of hyaluronic acid precursor substances to hyaluronic acid synthase concentration [43]. Fructose-6-phosphate produced from carbon sources can be used to synthesise lactic acid, inhibit bacterial growth and hyaluronic acid synthesis. It is possible to inhibit other pathways that compete with hyaluronic acid for carbon sources (such as glycolytic pathways), so that more carbon sources can be used for hyaluronic acid synthesis, thereby increasing hyaluronic acid production and molecular weight [44].
The balance of metabolic fluxes can affect the molecular weight of hyaluronic acid [45]. В. научные исследованияhas been carried out on fermentation conditions that affect hyaluronic acid production and molecular weight, such as temperature, aeration, pH, stirring speed, etc. Certain research has been conducted on fermentation conditions that affect the yield and molecular weight of hyaluronic acid, such as Liu Jinlong et al. [46] who studied the effect of fermentation conditions on the molecular weight of hyaluronic acid synthesized by Streptococcus equi subsp. zooecium. Batch culture fermentation mode is more conducive to the production of high molecular weight hyaluronic acid than glucose feeding culture mode. Within the range of 0–45% dissolved oxygen concentration, the relative molecular weight increased by 109.4% with increasing dissolved oxygen levels. Low temperatures are conducive to hyaluronic acid synthesis, and the yield and molecular weight of hyaluronic acid are relatively high at low temperatures. At 33 °C, the yield and molecular weight of hyaluronic acid are 4.41 g/L and 2.54×106, respectively. pH has a different effect on the yield and molecular weight of hyaluronic acid. The highest yield of hyaluronic acid (3.72 g/L) was obtained at pH 7, and the lowest yield (3.01 g/L) was obtained at pH 8. However, the highest molecular weight (2.38×106) was obtained at pH 8, indicating that Высококачественная гиалуроновая кислота production can be achieved by controlling the fermentation process conditions during the production process.
Экстракция тканей животных и микробная ферментация являются двумя наиболее распространенными методами производства гиалуроновой кислоты. Экстракция тканей используется для экстракции гиалуроновой кислоты из тканей животных. Этот метод часто использовался в первые дни, но процесс экстракции сложен, урожайность гиалуроновой кислоты низка, есть ограничения на источники сырья. С развитием науки и техники ферментация стала основным методом промышленного производства гиалуроновой кислоты из-за ее преимуществ низкой стоимости, высокой урожайности и простоты крупномасштабного производства. С постоянным совершенствованием метода подготовки, люди и#39;s demand for hyaluronic acid production has gradually shifted from high yield to high quality. Current research focuses on producing hyaluronic acid with specific molecular weight through genetic engineering, mutagenesis and other methods to meet the needs of hyaluronic acid in different applications. Establishing an efficient and safe preparation method of hyaluronic acid to produce hyaluronic acid with specific molecular weight that meets various application scenarios will become a research hotspot.
3.3 отделение и очистка гиалуроновой кислоты
Regardless of whether the tissue extraction method or the fermentation method is used, the crude hyaluronic acid extracted contains some proteins, nucleic acids and other impurities, which need to be separated and purified to obtain pure hyaluronic acid. According to the principle of separation and purification, it can be roughly divided into three methods: precipitation, 3. Фильтрацияand adsorption.
3.3.1 осадки
The main precipitation methods are quaternary ammonium salt precipitation and organic solvent precipitation. The principle of the quaternary ammonium salt puriВ целях развитияmethod is that the quaternary ammonium salt and hyaluronic acid have different charges in an aqueous solution. The two form a complex and precipitate out in a low salt solution, but dissociate and dissolve in a high salt solution, thereby achieving the purpose of removing impurities that do not complex with hyaluronic acid. Commonly used quaternary ammonium salts include cetylpyridinium bromide (CPB), cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC) and other long-chain quaternary ammonium salts [47]. This method of purification yields high-purity hyaluronic acid with good results, and can remove impurities that do not complex with quaternary ammonium salts. The organic solvent precipitation method mainly affects the dielectric constant of the medium to cause intra- and intermolecular aggregation, thereby achieving the purpose of removing proteins [48].
Compared with restricted reagents such as chloroform and acetone, ethanol is more widely used due to its safety and low cost. Song Lei et al. [49] optimised the factors affecting the purity of hyaluronic acid after ethanol extraction by combining plate and frame filtration to obtain a high purity hyaluronic acidСостав: 93,71%. Кавальканти и др. [50] исследовали влияние соотношения этанола к броту ферментации на диэлектрическую константу и влияние pH на очистку гиалуроновой кислоты. При pH 4 и соотношении жидкости ферментации этанола 2:1 чистота гиалуроновой кислоты составляла 55%, скорость восстановления 85%, а осадки органического растворителя использовались для начальной очистки гиалуроновой кислоты с хорошими результатами.
3.3.2 фильтрация
The principle of filtration is to retain particles on a porous membrane based on particle size. Compared to organic solvent precipitation, filtration does not involve the consumption of organic solvents, is simple to implement, and can be industrialised. However, the protein removal effect of filtration alone is not good, and pore blockage will occur as purification progresses, limiting its application in the purification of hyaluronic acid. Tangential filtration or the use of filter aids can greatly reduce pore blockage [51]. GÖZKE et al.[52] proposed an electrofiltration technique combining membrane filtration and electrophoresis. The electric field has a strong promoting effect on the filtration of hyaluronic acid. Compared with conventional filtration, the concentration factor based on the sample osmotic mass is increased by nearly 4 times in the same experimental time. Moreover, this filtration method will not negatively affect the molecular structure and average molecular weight of hyaluronic acid, providing new possibilities for the downstream purification process of hyaluronic acid.
3.3.3 адсорбция
Адсорбция-это метод очистки гиалуроновой кислоты, основанный на селективном удержании соединений на поверхности пористого твердого вещества. Широко используемые адсорбенты включают активированный уголь, смолы и силикатный гель. Активированный уголь является идеальным материалом для отделения и очистки гиалуроновой кислоты, поскольку он обладает сильной адсорбцией белков и нуклеиновых кислот и слабой адсорбцией нейтральных полисахаридов с высоким молекулярным весом. Wei Linna et al. [53] использовали этаноловые осадки в сочетании с адсорбцией с помощью активированного угля в процессе извлечения гиалуроновой кислоты с плато зокор tissues. The recovery rate of the extracted hyaluronic acid can reach 72.73%. CAVALCANTI et al. [50] found that the structure of hyaluronic acid at different pH values has an important effect on the precipitation performance. At pH 4, the recovery rate of hyaluronic acid was 85%, and at pH 7, the recovery rate of hyaluronic acid was 70%. During the use of activated carbon, adjusting the pH to an appropriate value can increase the recovery rate of hyaluronic acid.
Electrophoresis is a widely used method for separating proteins, and its separation efficiency is affected by the gel. Compared with other operations, it has a lower purification efficiency for hyaluronic acid. Ion 1. Обмен валютыchromatography is also one of the widely used methods for purifying biological macromolecules. This method is gentle and does not cause changes in molecular structure, but it is relatively expensive. It is necessary to select suitable exchange resins and exchange conditions, and the operation is complex. It is mainly used in the production of medical grade hyaluronic acid. Ni Hangsheng et al. [54] used a strong acid cation exchange resin in tandem with a strong base anion exchange resin modified with a histidine group. The impurity proteins in the crude hyaluronic acid were purified by exchange adsorption with the strongly acidic cation exchanger in an acidic solution, and eluted with 3. Натрийchloride solution. The protein content of the obtained high-quality hyaluronic acid is less than 0.075%, the average molecular weight is greater than 9.41×105, and the yield of purified weight is 58%~61%.
Separation and purification is an essential step in the preparation of high-purity, high-quality hyaluronic acid. At present, there is relatively little research on the effect of various purification operations on the purity of hyaluronic acid during purification. CAVALCANTI et al. [51] expressed the degree of purification as a percentage of hyaluronic acid or protein in the solution, and summarized the change in the purity of hyaluronic acid during the purification process.
The hyaluronic acid fermentation broth derived from Streptococcus zooepidemicus first underwent an isopropanol precipitation operation, with a protein content of 14.1%; a silica gel adsorption operation, with a protein content of 4.5%; and a charcoal filter module combining filtration and adsorption, with a protein content of only 0.6%. Finally, the protein content reached 0.06% after dialysis filtration. Each separation and purification method has its own advantages and disadvantages. In actual industrial production, a reasonable combination of several separation and purification methods is often used to achieve the maximum effect, depending on the source of the raw materials and the different requirements of the end products.
4 применение гиалуроновой кислоты
4.1 применение в пищевой промышленности
Hyaluronic acid is widely used in the Japanese food market. In addition to В области здравоохраненияfoods, it is also widely used in ordinary foods such as beverages, soft candies, and jams. In the UС. Sfood market, hyaluronic acid is mainly used as a dietary supplement [55]. At present, the main products containing hyaluronic acid in China are health foods, and the main effect is to improve skin moisture. Cha Shenghua et al. [56] developed a kind of bird's гнездо может с гиалуронатом натрия в качестве основного сырья, который может эффективно улучшить влажность кожи без других побочных реакций. Основными видами на рынке являются капсулы, пероральное администрирование и порошковые напитки. После того как гиалуроновая кислота поглощается через оральное пищеварение, увеличивается прекурсор синтеза гиалуроновой кислоты в организме, что увеличивает содержание гиалуроновой кислоты в организме и концентрирует ее в тканях кожи, тем самым повышая бритость#39;s водоудерживающая способность, смягчающая роговицу страта, повышающая эластичность кожи и уменьшающая морщины [57].
4.2 применение в косметике и предметы первой необходимости
Hyaluronic acid is found in large quantities in the human body and other living tissues. It has extremely strong moisturising properties and is mainly used in cosmetics as a moisturising agent, thickener and emulsifier [58−59]. At present, almost all types of cosmetic formulations on the market contain hyaluronic acid. Hyaluronic acid can easily form a hydrated film on the skin to enhance the lubrication of the skin, promote the absorption of active substances by the skin, and to a certain extent, the 1. Формирование вооруженных силof the film can isolate bacteria, which is beneficial to anti-inflammatory and repair of the skin and delay skin aging [60]. Hyaluronic acid is a component that exists in skin tissue itself, which is safer. In addition, as hyaluronic acid has an anti-inflammatory and restorative effect in the mouth, it can be added to toothpaste to provide a certain degree of moisturising and efficacy[61]. The application of hyaluronic acid in daily necessities is constantly expanding and deepening.
4.3 применение в медицинских целях
Hyaluronic acid is an important component of synovial fluid in the joints and plays an important physiological role in joint protection. Abnormal synthesis or metabolism of hyaluronic acid in the joints can lead to joint diseases. At this time, exogenous hyaluronic acid can be injected to supplement the synovial fluid and improve the physiological function of the joints[62]. Due to its unique physical and chemical properties and biocompatibility, hyaluronic acid is widely used in ophthalmic surgeries related to the retina and cataracts.
Гиалуроновая кислота используется в качестве наполнителя в медицинской эстетике для инъекций под кожу с целью устранения морщин и шрамов на лице и придания лицу пухлого внешнего вида [63]. Гиалуроновая кислота спрей может быть использован для ремонта пациента и#39;s face after laser surgery, effectively restoring skin barrier damage[64]. Hyaluronic acid derivatives are also widely used in ophthalmic preparations. For example, sodium - гиалуронатcan replace the role of tear mucin and is used to - да, конечно.dry eye disease and relieve dry eye symptoms [65]. Studies have found that the body'. Содержание гиалуроновой кислоты будет увеличиваться при возникновении многих заболеваний. Поэтому клинически уровень гиалуроновой кислоты в сыворотке может быть использован для отражения изменений в различных заболеваниях, что имеет большое значение для вспомогательной диагностики.
Hyaluronic acid is widely used in food, cosmetics, daily necessities and medicine. Its application in functional skin care products, ophthalmology and orthopedics is relatively mature. There is still huge potential for its application in the food industry. Oral hyaluronic acid is milder than external application and injection, and can stimulate vitality from the inside out. In January 2021, the National Health Commission approved the addition of hyaluronic acid as a new raw material for food to be added to ordinary foods. This indicates that the application of hyaluronic acid in the food sector will see large-scale growth. In addition, there are many modification sites on the hyaluronic acid molecule, and modification of its active groups, such as cross-linking, esterification, and grafting, gives it better physicochemical properties and resistance to enzymatic hydrolysis [66], allowing hyaluronic acid to be used in more complex environments. With technological progress, the application of hyaluronic acid in various fields will become more and more in-depth.
5. Выводы и перспективы
Hyaluronic acid has important physical and chemical properties and physiological functions. It has a wide range of applications and a large market demand. Global sales of hyaluronic acid raw materials are showing an upward trend. At present, the main methods for industrial production of hyaluronic acid are animal tissue extraction and microbial fermentation. The microbial fermentation method has the advantages of low cost and easy mass production. With the continuous expansion of hyaluronic acid application scenarios and the growing market demand, establishing an efficient and safe hyaluronic acid extraction and purification process, modifying hyaluronic acid molecules to produce specific molecular weight hyaluronic acid that meets different application scenarios will become research hotspots.
Ссылка на сайт
[1] чжан к, цзянь ь, Чжан з. п. прогресс в исследованиях по структуре, свойствам, моди - fication and application of hyaluronic Кислота [J]. - полимер (полимер) [электронный ресурс] 2015,9:217. 226.
[2] Чон о, сон с джей, ли к и др. Механические свойства и Поведение деградации гидрогелей гиалуроновой кислоты пересекается на various B. перекрестная увязка Плотность [J]. Углеводы (углеводы) Полимеры,2007, 70(3):251. 257.
[3] Коган G, Š OLTES - L,STERN R, и др. Гиалуроновая кислота: природный биополимер с широким спектром биомедицинских и промышленных применений1. Биотехнологические письма,2006,29(1):17. 25.
[4] Кауман м 'к, ли HG, швертфегерк л и др. Содержание и размер гиалуронана в биологической Жидкости и ткани [J]. Горизонты в иммунологии,2015(6):261.
[5] HLAVACEK M. роль синовиальной фильтрации жидкости хрящевым возрастом в смазке синовиальных соединений-i. Смешанная модель синовиальной жидкости [J]. Журнал биомеханики,1993,26(10):1145/1160.
[6] Марек п, ма гратгорзата к, яцек к, и др. В настоящее время Оксидат-ive стресс у пациентов с остеоартритом колена попытка оценки возможных компенсационных эффектов, происходящих в развитии болезни-nt [J]. Медицина,2019,55(5):150.
[7] Войт джей, вики р. гиалуроник Кислотные производные и их лечение effect on - бернс, - эпителия. - хирургическое вмешательство - раны, and Хронические раны: систематический обзор и мета-анализ рандомизированных испытаний под тележкой [J]. Ремонт и восстановление ран,2012,20(3):317-331.
[8] HOTAMISLIGILG S. воспаление, метафламация и im — мунометаболические нарушения [J]. Природа,2017,542(7640):177. 185.
[9] KOJOUHAROV H V, TREJO I, CHEN B M. моделирование ef- fects воспаления при заживлении переломов костей [C]/ американский Инсти-тут В области физики Конференция по торговле и развитию - в сериале. Соединенные Штаты америки Институт международных отношений Серия конференций физики, 2017.
[10] Гришма с п, рохан б, Чарльз D E. численное - в вестибюле Лейкоцитной прокатки, 2.2 сцепление с дорогой И облигации, formation На поверхности с различным p- селективным покрытием [J]. Мобильный пресс, 2019, 116(3): 18.
[11] Лэнден н икс, ли ди Q, STAHLE M. переход от In-фламация к распространению: критический этап при заживлении ран [J]. С помощью сотовой связи and 10. Молекулярная структура Жизнь и здоровье Научные науки: Cmls,2016,73(20):3861− 3885.
[12] Джон ч. и., абатанджело г. функции гиалурона A в ремонте ран [J]. Ремонт и восстановление ран,1999,7(2): 79. 89.
[13] Хей е, химено к и, гуан г и др. Пространственно-временные рамки Con-trol вискоэластичности в фотонастраиваемых гидрогелях гиалуроновой кислоты [J]. Биоакромолекулы,2019,20(11):4126−4134.
[14] DOVEDYTIS M, LIU Z J, бартлетт с. гиалуроновая кислота и ее биомедицинское применение: обзор [J]. Инженерное восстановление,2020,1:102. 113.
[15] Слевин м, крупинский дж, гаффни дж и аль-гиалуронан-при посредничестве посредников angiogenesis in vascular Заболевания: Открытие для себя RHAMС. О.и CD44 рецепторы сигнализирующие пути [J]. Матричная биология: журнал международного общества матричной биологии, 2007, 26(1): 58-68.
[16] Чжун и н, катарина г, чэн л и др. Гиалурон-ик кислотный обстрел Кислотно-активен Паклитаксел пронаркотик 1. Микселы Эффект-ivy Целевой показатель and treat Cd44 - чрезмерное давление human - грудинка; Ксенографии опухоли in vivo[J]. Биоматериалы,2016:84.250−261.
[17] Мосли р, сливер м, уокер м и др. Компарис-по антиоксидантным свойствам HYAFF ® -11p75, акваэль ® и hyaluronan к химически активным кислородным видам in vitro[J]. Bioma- terials,2002,23(10):2255−2264.
[18] фэн н, ши л, го ф х и др. Исследование по вопросу о воздействии Пероральная гиалуроновая кислота на улучшение влажности кожи и in vivo Антиоксидантный эффект [J]. Продукты питания и медикаменты,2016,18(6):386−390.
[19]YU H H, 1. ЛиW, TONG C Q. извлечение гиалуроновой кислоты из слизи поверхности тела гигантского саламандера и его антиоксидантной активности [J]. Agricul- переработка продукции растениеводства,2018,10:18. 21.
[20] го х п - L, Солнце и Солнце M L, et al. 3. Применение of hyaluronic acid in health Продукты [J]. Китайский журнал биохимической фармацевтики,2002, 23(1):49. 51.
[21]WU B J, NI H Л, чжу м л и др. Научный прогресс и применение гиалуроника Кислота [J]. Китайский журнал эстетической пластической хирургии,2018,29(4): 252. 254.
[22] Лоран т. биохимия гиалуронана [дж]. Acta Oto- ларинголика супментум,1987,442:7. 24.
[23] чэнь - J. - с, Ван джей кью, и и др. Исследования гиалуроновой кислоты и ее содержания Деривативы [J]. Chinese Журнал по теме of Наука,2015,35(2): 111. 118.
[24] Ван с. ф. статус заявления Алуроновая кислота [J]. Китайский журнал медицинских изделий,2018,42(1): 74. 76,78.
[25] Ша к. исследования в области экстракционной техно-логии of hyaluronic acid from the skin Китайской народной республики 3. Леса Лягушка [D]. Чанчунь: цзилинский сельскохозяйственный университет, 2004.
[26] JIANG S, LIANG H. Hyaluronic acid- очень популярный инструмент красоты [J]. Здоровый мир,2020(2):25 апр. 27.
[27] Мэри к. к., сиро м. экспериментальные подходы к структуре гиалур — онан [дж]. Исследования углеводов,2005,340(5):791. 809.
[28] Триведи н, багел р с, ботвелл дж., и др. Комплексный процесс извлечения топлива и химикатов из морской макроводорослей [J]. Научные доклады,2016,6(1):30728.
[29] И я, сюй джей, Мэй джей ф и др. Исследование процесса экстракции гиалуроновой кислоты Из тунцовых глаз [J]. Журнал чжэцзянского технологического университета, 2018,46(3):276 шт.
[30] ARINOBU - Y,ATAMAS S P, OTSUKA T, et al. Молекулярное клонирование и Характеристика предполагаемого гиалуронана мыши Syn-thase[J]. Биологическая химия,1996,271(38):23400. 23406.
[31] донателла с, илеана д и, элизабетта с и др. En- gineering S. equi subsp. Зоэпидемик к гиалуроническому склеиванию acid and - чондройтин Биополимеры (биополимеры) of Биомедицинский интерес [J]. AMB Express,2017,7(1):61.
[32] PAN N C, PEREIRA H C B, SILVA M L C, et al. Улучшение-производство гиалуроникислоты стрептококковым зооэпидемиком в молассесахарном тростнике [J]. Биотехнология и Ap- plied Chemistry,2017,182(1):276−293.
[33] Цзинь п, кан з, юань п х и др. Производство специфических — молекулярно-весовых гиалуронов метаболически-инспирированных Bacillus subtilis 168[J]. Метаболическая инженерия 2016, 35: 21-30.
[34]WEI C B, DU G C, CHEN J, et al. Строительство инженерного корпуса Штамм ферментации гиалуроновой кислоты олигосахарида стрептококка Zooepidemicus [J]. Китайский журнал биологической инженерии,2019 год, 35(5):805 815.
[35] Адам в. вестбро к., сян р., и др. Метаболический en- gineering для повышения гетерологического производства гиалуроновой кислоты в Bacillus subtilis[J]. Метаболическая инженерия,2018,47:401−413.
[36] Сунгуро граулу с, сезгин д е, айтар с п, и др. Увеличение производства гиалуроновой кислоты в рекомбинате Lactococcus lactis[J]. Препараты биохимии и Биотехнология,2018,48(8): 734/742.
[37] Чэн ф, ю х, стефанопуло г и др. Инженер-ing Corynebacterium glutamicum для биосинтеза высокой титры hya- luronic acid[J]. Метаболическая инженерия,2019,55:276. 289.
[38] Микробный синтез гиалура — онана и читина: новые подходы [J]. Bioci Bioeng, 2005, 99(6): 521-528.
[39] Садхасивам г, мутувел а. изоляция и характер — выделение гиалуроновой кислоты из морских организмов [J]. Достижения в исследованиях в области продовольствия и питания,2014,72:61. 77.
[40] Кальканделен с, су с, саатчоглу е и др. Hyalur- производство и анализ оновой кислоты от rooster comb[C]// 2020 Med- ical Technologies Congress (TIPTEKNO). Анталия, 2020: 1. 4.
[41] ургеова е, вулганова к. сравнение ферзиматического гидролиза полисахаридов из яичных оболочек [J]. Нова — биотехнология и химика,2016,15(2):133. 141.
[42]CHEN S J, CHEN H, GAO R C и др. Технологические условия для экстракции гиалуроновой кислоты из глаз тилапии ультразвуком -as- В городе систед enzymatic Гидролиз [J]. Журнал по теме of В ядерной области Сельское хозяйство, 2014,28(8):1446. 1452.
[43]GAO J J, YANG S L. Research Ii. Прогрессon the production of high Mo-лекулярный weight hyaluronic acid by microbial Ферментация [J]. Китайский журнал биоинженерии,2017,37(5):118 к. 125.
[44]DONG Z H. исследования по мутационной селекции и технологии ферментации гиалуроновой кислоты под контролем молекулярного веса [D]. Ханчжоу: цеджи — ang University of Technology, 2017.
[45] Карами м, шахраки м к, ранджбар м и др. Пре-парация, очистка и характеристика гиалуроновой кислоты с низким молекулярным весом [J]. Биотехнологические письма,2021,43(1):133/142.
[46] Лю джей л, чжао г к, ли з м и др. Влияние состояния культуры на молекулярный вес гиалуроновой кислоты, синтезированной методом Streptococcus equisimilis[J]. Журнал пищевой науки и биотехнологии,2015,34(2):209. 214.
[47] Амагай I, тасиро Y, огава H. совершенствование процедуры экстракции гиалуронана из глазных ягод рыб и определение молярной системы [J]. Наука о рыболовстве,2009,75(3):805 июл. 810.
[48] Ли, ши, ян икс и др. Депротеинизация, антиоксидогенная активность и ингибиторное действие на а-амилазу полисахаридов из кукурузного шелка [J]. Биотехнол, 2019, 15(2): 83 — 90.
[49] песня L, MENG G Q, GUO Y F и др. Исследование по экстракции и пурификационному процессу гиалуроновой кислоты в броте ферментации [J]. Шаньдун сельскохозяйственные науки,2017,49(3):134. 139.
[50] Кавалканти A D D, мело B A G, OLIVEIRA R C, и др. Восстановление и чистота биогиалуроновой кислоты с высокой молярной массой через осадки Ii. Стратегии Число модулированных должностей by pH and sodium Хлорид [J]. Биотехнол, 2019, 188: 527 — 539.
[51] Кавалканти а, мело б, феррейра б и др. Выполнение-проведение основных операций на выходе гиалуроновой кислоты purifica- tion[J]. Биохимия процессов,2020,99:160. 170.
[52] GOZKE G, KIRSCHHOFER F, PRECHTL C, et al. Электро-фильтрация Улучшается состояние здоровья В тупик зашел. filtration of hyaluronic acid И представляет собой альтернативный этап последующей обработки, который позволяет преодолеть технологические трудности, связанные с обычными методами [J]. Наука о жизни,2017,17(9):970 град. 975.
[53]WEI L N, WANG Y, WEI D B и др. Технология экстракции и молекулярная характеристика гиалуроновой кислоты плато зокор тис-сус [J]. Вестник биотехнологии,2017,33(3):151. 161.
[54] ни х с, ли р, он и л и др. Очистка от загрязнения of hyaluronic acid by ion exchange Хроматография [J]. Китайский журнал фармацевтических препаратов,2001,11:5 8.
[55]LIU S, WANG J Z. The charac- teristics of hyaluronic acid and its application in food[J]. Химико-конструкторские коммуникации,2018,44(8):62.
[56] Ча с ч, ван й л, лиан с с и др. В целях развития Коллагена горной сахарной птички#39;s гнездо и его влияние на улучшение влажности кожи [J]. Пищевая промышленность,2020,41(2):129. 134.
[57]JIANG Q Y, Линг п х, ченг и др. Распространение пероральной гиалуроновой кислоты У животных [J]. Китайский журнал биохимической фармацевтики,2008 29(2):73. 76.
[58] чжу с, чжу у, вей в и др. Подготовка и применение гранулированного эмульгатора кумариновой кислоты [J]. Журнал организации объединенных наций Func- tional Polymers,2016,29(4):388 СТР.
[59] фу S Y, LI - джей. - привет. Research on the progress of Лицо на лице Маска [J]. Химический менеджмент,2017,26:117. 119.
[60]MENG L L, DU T, Ван х х и др. Научный прогресс в области применения гиалуроника acid in Косметика [J]. Шаньдун (Китай) По химическому оружию Промышленность,2018 год, 47(18):52−54,56.
[61] сюй х и, ван х и, сяо х х и др. Применение гиалуроновой кислоты в зубной пасте [J]. Продукты для ухода за полости рта,2020,30(6):13 апр. 17.
[62] Ян у, чэнь з х, и з и и др. Последствия изменения климата Внутрисуставная инъекция гиалуроновой кислоты и плацебо в - угощение - ment В первой половине дня and В середине сцены - колено. Остеоартрит: A B. мета-анализ На основе рандомизированных, двойных блайндов, контролируемых и клинических испытаний [J]. Китайские тканевые исследования,2021,25(23):3760−3766.
[63] лю л т, у л, зенг д л и др. Прогресс применения гиалуроновой кислоты для инжекции [J]. Журнал практической дерматологии,2020,13(6):352. 355.
[64]MA Y, PENG P, ZHAO Q. эффект применения И безопасность спрея гиалуроновой кислоты при восстановлении кожи пациентов после лазерной хирургии лица [J]. Клинические медицинские исследования и практика,2020 г. 5(36):175. - 177.
[65] ю х л. клиническая 3. Наблюдение of 0,3% от общего числа sodium hyaluronate Объединенные арабские эмираты С пранопрофеном в лечении сухих глаз [J]. Электронный журнал клинической медицины,2019,6(60):71.
[66]HU L J, LIU F L, LI L C, et al. Обобщение информации, представленной Амфифильные гиалуроновые кислотные производные и их применение при поставке антиопухолевых нанопрепаратов Системы [J]. Прогресс в области фармацевтики Наука,2017,41(11):804. 811.